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Abstract. The coupled-channel method is used to calculate excitation, single- and double-ionization cross-
sections for helium collisions with heavy ions. The wave functions of the channels are helium wave functions
constructed with Slater functions and Coulomb wave packets. Results of calculations with various projec-
tiles and incident energies are compared with experimental data and other theoretical cross-sections.

PACS. 34.50.Fa Electronic excitation and ionization of atoms (including beam-foil excitation and ioniza-
tion) – 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.)

1 Introduction

Ionization of the helium atom in collisions with fast highly
charged ions is very interesting from both fundamen-
tal and applied points of view. The single-ionization for
very fast, fully stripped ions colliding with light atoms is
well understood both theoretically [1,2] and experimen-
tally [3]. However for multiple ionization processes the
level of knowledge is substantially lower. This is due to
the fact that the electron-electron correlation plays an im-
portant role. Therefore, the theory should go beyond the
independent-electron model. The role of the wave func-
tions is essential as was shown by Byron and Joachain [4].
The experimental set-up for measurements has gained
such a high quality and accuracy that the individual mo-
menta of the two participating electrons and of the recoil
ion become measurable (see [5,6]).

In this paper we study the two-electron problem of
helium in collisions with highly charged ions within a
coupled-channel formalism. As basis wave functions we
take helium functions built up by Slater functions for the
bound states and Coulomb wave packets for the contin-
uum states. Such a basis was also used in stopping power
and ionization calculations for the case of proton and light
heavy ions penetrating into H and He targets [7]. This
work is an extension of an earlier work of Pfeiffer et al. [8]
where only Slater functions were used for the construction
of helium states.

� This work is part of the doctoral thesis of I.F. Barna,
Giessen (D26) 2002.
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In Section 2 we present the theoretical basis of our
calculations, namely the coupled-channel formalism, the
helium wave functions for the individual channels and the
separation of excitation, single- and double-ionization by
a projection method. The results of coupled-channel cal-
culations for various projectiles and incident energies are
compared with experimental data and other theoretical
studies in Section 3. Atomic units are used throughout
the paper if not stated otherwise.

2 Theory

We describe the collision of a projectile ion with a helium
atom as target in semiclassical approximation. The origin
of the coordinates is the helium nucleus which is assumed
to be fixed in the laboratory system. In this system we
assume the projectile moving on a straight-line trajectory
RP(t) = bex + vPtez with impact parameter b and con-
stant velocity vP = vPez. The two electrons are described
with the vectors r1 and r2.

The Hamiltonian of the system can be written

Ĥ = ĤHe + V̂ , (1)

where the Hamiltonian ĤHe of the helium atom is as-
sumed as

ĤHe =
p2
1

2
+

p2
2

2
− 2

r1
− 2

r2
+

1
|r1 − r2| · (2)
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The interaction with the projectile is given as

V̂ =
1
2

(A(r1, t)p1 + p1A(r1, t))

+
1
2

(A(r2, t)p2 + p2A(r2, t))

+
1
2

(
(A(r1, t))2 + (A(r2, t))2

) − ϕ(r1, t) − ϕ(r2, t),

(3)

where A and ϕ are the electromagnetic potentials of the
projectile in the target system.

2.1 Coupled-channel equations

In order to solve the time-dependent Schrödinger equation

i
∂

∂t
Ψ(r1, r2, t) =

(
ĤHe + V̂

)
Ψ(r1, r2, t), (4)

we expand the wave function in orthonormalized eigen-
states Φi of ĤHe satisfying the eigenvalue equation with
eigenvalues Ei

ĤHeΦi(r1, r2) = EiΦi(r1, r2). (5)

Then the wave function Ψ(r1, r2, t) can be written with
the time-dependent coefficients ai(t)

Ψ(r1, r2, t) =
N∑

i=1

ai(t)Φi(r1, r2) exp(−iEit). (6)

Inserting this relation into equation (4) we obtain

dai(t)
dt

= −i
N∑

j=1

Vij(t) exp(i(Ei − Ej)t)aj(t) (7)

with

Vij(t) =
〈
Φi|V̂ |Φj

〉
. (8)

Denoting the helium ground state with i = 1, we use the
following initial conditions for solving equation (7):

ai (t → −∞) =
{

1 if i = 1,
0 if i �= 1.

(9)

Then the total cross-section for occupying the helium
eigenstate i can be calculated as

σi = 2π

∫ ∞

0

Pi(b)bdb (10)

with the probability

Pi(b) = |ai(t → ∞)|2. (11)

The coupled system of equations (7) has to be solved nu-
merically. However, approximate solutions for the coeffi-
cients ai(t) can be calculated in first-order perturbation
theory for i �= 1:

ai(t) = −i
∫ t

−∞
Vi1(t′) exp(i(Ei − E1)t′)dt′. (12)

The accuracy and range of validity of the first-order per-
turbation theory will be discussed in Section 3.

2.2 Approximate helium eigenstates

Since the helium is initially in the ground state and the
Hamiltonian (1) does not mix singlet and triplet helium
states, only singlet helium states enter the calculation.
Therefore, we can disregard the spin part of the wave func-
tions Φi and expand them in functions symmetric in the
exchange of the coordinates r1 and r2

Φi=(ν,LM)(r1, r2) =
∑

µ

bLM
µν fLM

µ (r1, r2) (13)

with

fLM
µ (r1, r2) =

∑
ma,mb

(�ama�bmb|LM)

× (Rna�a(r1)Rnb�b
(r2)Y�ama(ϑ1, ϕ1)Y�bmb

(ϑ2, ϕ2)
+ Rna�a(r2)Rnb�b

(r1)Y�ama(ϑ2, ϕ2)Y�bmb
(ϑ1, ϕ1)) (14)

and the abbreviation

µ = (na, nb, �a, �b).

For the radial single-particle wave functions Rn�(r) we use
hydrogen-like Slater functions mainly for the bound state
spectrum and wave packets formed with regular Coulomb
functions for the continua. The Slater functions read (no
dependence on �)

Rn�(r) = Sνκ(r) = c(ν, κ)rν−1 exp(−κr) (15)

with n = (ν, κ) and c(ν, κ) = (2κ)ν+ 1
2 /

√
(2ν)!.

The functions Sνκ are not orthogonal, but normalized
to unity:

∫ ∞

0

S2
νκ(r)r2dr = 1. (16)

The radial wave packets are constructed by an integral
over regular Coulomb wave functions [9] in the interval
(E − ∆E/2, E + ∆E/2) corresponding to (k − ∆k/2 =
(2E − ∆E)1/2, k + ∆k/2 = (2E + ∆E)1/2):

Rn�(r) = Ck,�,∆k,Z(r)

=
1√
∆E

∫ k+ ∆k
2

k− ∆k
2

√
2k′

π
exp

(
πZ

2k′

)
(2k′r)�

(2� + 1)!
exp(−ik′r)

× |Γ (� + 1 − iZ/k′)|1F1(1 + � + iZ/k′, 2� + 2, 2ik′r)k′dk′

(17)

with n = (k, ∆k, Z). Here, Z is an effective charge number
and is chosen Z = 1 for single-ionized basis states and
Z = 2 for double-ionized basis states. The functions (17)
are real and orthonormalized as follows

∫ ∞

0

Ck,�,∆k,Z(r)Ck′ ,�,∆k,Z(r)r2dr = δk,k′ . (18)

The set of wave packets concentrated about the positive
mean energies En = (2n + 1)∆E/2 with n = 0, 1, 2...
simulates the single-particle states of the continuum.
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Fig. 1. Distribution of the diagonalized singlet
states as a function of energy with L = 0, 1 and
2, presented as histograms with thick, thin and
dotted lines, respectively.

Using an equidistant energy spacing of the wave pack-
ets, we managed to describe the low energy single- and
double-continuum up to 6 a.u. We also tried to apply an
equidistant spacing for the k values which yields a sparse
state density with increasing energy and appears not so
useful for our purpose.

Out of the single-particle states (15) and (17) we used
17 s-functions (9 Slater functions (sf), 4 wave packets (wp)
with Z = 1 and 4 wp with Z = 2), 18 p-functions (6 sf,
6 wp with Z = 1 and 6 wp with Z = 2) and 12 d-functions
(4 sf, 4 wp with Z = 1 and 4 wp with Z = 2) and
constructed the symmetrized basis functions fLM

µ (r1, r2).
From the possible two-electron product states we selected
91 S-functions with configurations (s2) and (s, s′), 156 P -
functions with configurations (s, p) and 104 D-functions
with configurations (s, d). The letters S, P, D stand for
L = 0, 1, 2. We note that the M multiplicities, M = 3 and
5 for P and D states, respectively, are not contained in the
above mentioned numbers of states. The effective charge in
the wave packet is Z = 1 if the basis function fLM

µ (r1, r2)
contains a single wave packet and Z = 2 if the basis func-
tion is a product of two wave packets. Tables of the used
single particle functions with their parameters are listed
in reference [10].

As an example we give the chosen energy values of the
6 p Coulomb wave packets with Z = 1: 0.226, 0.417, 0.625,
0.828, 1.052, 1.238 a.u., and with Z = 2: 1.978, 2.470,
2.957, 3.436, 3.924, 4.432 a.u. The energy differences are
about ∆E = 0.2 and 0.5 a.u., respectively. The energies
of the Coulomb wave packets with Z = 2 are taken higher
than those with Z = 1 in order to describe double-ionized
states also with one slower electron in an s-state and a
faster electron in a p- and d-state.

Applying the three sets of basis functions fLM
µ (r1, r2)

with L = 0, 1, 2 and diagonalizing ĤHe, we obtained ap-
proximate wave functions Φi=(ν,LM)(r1, r2) for the singlet
states of He. The obtained energy eigenvalue of the ground
state is −2.88 a.u. in comparison to the experimental value
of −2.904 a.u. [11]. This deviation is due to the lack of an-

gular correlated pp- and dd-functions. The diagonalization
provides wave functions of the bound states and the states
of the single and double continua with autoionizing bound
states such as the 2s2-state embedded in the continuum.
Figure 1 shows the distribution of the obtained He states
as a function of the energy. The total numbers in the fig-
ure are 90 S-states (one state has an energy of 27.4 a.u.
and is not included), 156 P -states and 104 D-states.

2.3 Separation of excitation,
single- and double-ionization by a projection method

Since we want to calculate cross-sections for excitation,
single- and double-ionization, we need the separate con-
tributions of each state to these final reaction channels. In
a former publication [8] we discriminated the states by ex-
amining the electron density. This method is not satisfac-
tory in our case. Therefore, we constructed a new Hilbert
space which is split into three different orthogonal sub-
spaces characterized by the properties of the two electrons:
1 – bound-bound, 2 – bound-ionized, 3 – ionized-ionized
electrons, respectively. The orthonormalized wave func-
tions of these Hilbert spaces are obtained as follows: first,
the same set of single-particle functions Rn�(r)Y�m(ϑ, ϕ),
used for the construction of the functions fLM

µ (r1, r2), is
taken and the Hamiltonian of hydrogen is diagonalized
with it. Only wave packets with Z = 1 are used. The
resulting single-particle functions R̃s�(r)Y�m(ϑ, ϕ) are or-
thonormalized and are bound, if the energy eigenvalue is
smaller than zero, and in the continuum, if the energy
eigenvalue is positive. Secondly, we construct with this
set of single-particle functions the three subspaces of 2-
electron functions:

Ψλ,LM (r1, r2) = (1/Nλ)
∑

ma,mb

(�ama�bmb|LM)

× (R̃sa�a(r1)R̃sb�b
(r2)Y�ama(ϑ1, ϕ1)Y�bmb

(ϑ2, ϕ2)

+ R̃sa�a(r2)R̃sb�b
(r1)Y�ama(ϑ2, ϕ2)Y�bmb

(ϑ1, ϕ1)) (19)
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with λ = (sa, sb, �a, �b) and Nλ =
√

2(1 + δsasb
δ�a�b

).
If both radial functions R̃sa�a and R̃sb�b

belong to neg-
ative eigenvalues, we classify Ψλ,LM = Ψbb

λ,LM as bound-
bound function; if one of the radial functions belongs to
a bound eigenvalue and the other radial function to the
continuum, we classify Ψλ,LM = Ψbi

λ,LM as bound-ionized
function; if both radial functions belong to the continuum,
we classify Ψλ,LM = Ψ ii

λ,LM as ionized-ionized function.
Then we expand the He-functions (13) in terms of the
functions (19):

Φj(r1, r2) =
∑

λ

(
Cbb

λj,LMΨbb
λ,LM + Cbi

λj,LMΨbi
λ,LM

+C ii
λj,LMΨ ii

λ,LM

)
(20)

with

Cλj,LM = 〈Ψλ,LM |Φj=(ν,LM)〉. (21)

With the expansion coefficients Cλj,LM we find the por-
tion of a bound (bb) configuration and of single (bi)-
and double (ii)-ionized configurations in the wave func-
tion Φj(r1, r2):

Abb
j =

∑
λ

|Cbb
λj,LM |2,

Abi
j =

∑
λ

|Cbi
λj,LM |2,

Aii
j =

∑
λ

|C ii
λj,LM |2, (22)

where we assume completeness: Abb
j + Abi

j + Aii
j = 1.

Then the probabilities for the appearance of certain
configurations after the collision are calculated as

P bb
j = Abb

j |aj(t → ∞)|2,
P bi

j = Abi
j |aj(t → ∞)|2,

P ii
j = Aii

j |aj(t → ∞)|2. (23)

These probabilities are used for calculating the cross-
sections for the excitation of helium, the single- and
double-ionization by inserting them into equation (10) and
summing over j if needed.

2.4 The projectile-electron interaction

The electromagnetic potentials of the projectile are as-
sumed in the form of Lienard-Wiechert potentials

ϕ(r, t) =
γPZP

R(t)
, A(r, t) =

1
c2

γPvPZP

R(t)
ez (24)

with

γP = (1 − v2
P/c2)−1/2

and R(t) = ((x − b)2 + y2 + γ2
P(z − vPt)2)1/2.

Table 1. State-selective excitation cross-sections for 1 MeV
proton projectiles. The units are 10−18 cm2.

Experimental data Coupled-channel

[12] calculations

σ(21P) 4.91 4.72

σ(31P) 1.26 1.31

σ(41P) 0.53 0.54

Inserting these potentials into equation (3) we obtain the
projectile-electron interaction

V̂ = − ivPγPZP
1
c2

(
1

R1(t)
∂

∂z1
+

1
R2(t)

∂

∂z2

)

− γPZP

(
1

R1(t)
+

1
R2(t)

)

+
v2
Pγ2

PZ2
P

2c4

(
1

R1(t)2
+

1
R2(t)2

)

+ i
vPγ3

PZP

2c2

(
z1 − vPt

R1(t)3
+

z2 − vPt

R2(t)3

)
, (25)

where Ri(t) = ((xi − b)2 + y2
i + γ2

P(zi − vPt)2)1/2 with
i = 1, 2.

The results of Pfeiffer et al. [8] showed that it is satis-
factory to use only the scalar potential terms for incident
energies with γP < 3.2, corresponding to 2 GeV/nucleon.
Therefore, we neglect the terms containing the vector po-
tential A and set the projectile-electron interaction equal
to the unretarded scalar potential

V̂ = −ZP

(
1

R1(t)
+

1
R2(t)

)

γP=1

. (26)

The method of the calculation of the matrix elements of
V̂ with the Slater functions and wave packets is described
in [10].

3 Results

The coupled-channel equations were numerically solved by
using a Runge-Kutta-Fehlberg method of fifth order with
time steps automatically regulated. The conservation of
the norm of the wave function was fulfilled better than
10−8 during the collision time. We chose projectile en-
ergies and charges for cases where the electron capture
process can be neglected.

3.1 Calculations of excitation cross-sections

The first calculations were test calculations to reproduce
the measured cross-sections for state-selective excitation
of helium in collisions with 1 MeV protons. The compari-
son of results from our coupled-channel calculations with
experimental data of Hippler and Schartner [12] is given
in Table 1. Our results are affected by 1–2% by the us-
age of wave packets in the basis, as calculations with and
without wave packets have demonstrated.
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Table 2. Single- and double-ionization cross-sections for 3.6 MeV proton projectiles.

Single-ion. Double-ion. Ratio
σ+(10−19 cm2) σ++(10−21 cm2) (×10−3)

Exp. [13] 70.7 19.2 2.71
CC calc. [8] 58.58 6.59 1.12
Present CC calc. 66.52 18.66 2.80
FIM [15] 9s9p5d 68.2 23.69 3.03
FIM [15] 9s9p9d 70.0 18.9 2.70

Table 3. Single- and double-ionization cross-sections for 3.6 MeV anti-proton projectiles.

Single-ion. Double-ion. Ratio
σ+(10−19 cm2) σ++(10−21 cm2) (×10−3)

Exp. [14] 70.08 27.9 3.98
Present CC calc. 66.11 25.12 3.8
FIM [15] 9s9p5d 68.2 28.6 4.2
FIM [15] 9s9p9d 70.04 27.7 3.96

Table 4. Single-ionization total cross-sections obtained with coupled-channel calculations and with first-order perturbation
approximation.

Proj. Energy ZP/vP Exp. value CC calc. Pert. calc.

MeV/nucl. a.u. (10−16 cm2) (10−16 cm2) (10−16 cm2)

U92+ 1000 0.76 7.4 ± 30% 4.8

U90+ 60 1.92 13 –77% +150% 12.1

U90+ 120 1.41 38 –50% +190% 9.7

U90+ 420 0.91 9.8 –70% +200% 8.1

Kr36+ 500 0.36 0.9 ± 50% 1.09 3.2

Kr36+ 1000 0.30 0.72 ± 50% 0.9 2.9

C6+ 100 0.1 0.1 0.097 0.11

He2+ 2.31 0.20 0.44 ± < 5% 0.40 0.46

Li3+ ” 0.31 0.98 ± < 5% 0.90 1.038

B5+ ” 0.51 2.44 ± < 8% 2.11 2.88

C6+ ” 0.62 3.3 ± < 8% 3.05 4.15

3.2 Single- and double-ionization with proton
and anti-proton projectiles

We made coupled-channel calculations for proton and
anti-proton collisions with helium at 3.6 MeV. In atomic
units the projectile velocity is vP = 12 a.u. and the ra-
tio ZP/vP = 0.08 which means that perturbative calcu-
lations are also possible. Tables 2 and 3 present our re-
sults for proton and anti-proton collisions, respectively,
in comparison with experimental data [13,14], coupled-
channel calculations of Pfeiffer et al. [8] and with results
of Ford and Reading [15] obtained with the Forced Im-
pulse Method (FIM) which are considered as benchmark.
Pfeiffer et al. [8] took only Slater functions and no wave
packets into account. The comparison of both coupled-
channel calculations in Table 2 shows that the wave
packets are important to reproduce the double-ionization
cross-section, i.e. the continua are better described with
wave packets than with Slater functions only.

The FIM results are still better than our results. One
reason is that Ford and Reading [15] used larger sets of He
basis states, namely 1093 states for the 9s9p5d basis and

1863 states for the 9s9p9d basis, which has to be compared
to 277 channels applied in our calculations.

3.3 Heavy ion projectiles

Next we chose the following projectiles and energies in
collisions with helium which were experimentally studied:

1. U92+ at 1 GeV/nucleon (Moshammer et al. [6]),

2. U90+ at 60, 120, 420 MeV/nucleon (Berg et al. [16]),

3. Kr36+ at 500 and 1000 MeV/nucleon (Berg et al. [17]),

4. C6+ at 100 MeV/nucleon (Bapat et al. [18]),

5. He2+, Li3+, B5+, C6+ at 2.31 MeV/nucleon (Knudsen
et al. [19]).

Tables 4 and 5 show the single- and double-ionization
total cross-sections, respectively, measured in experiment
and calculated with the coupled-channel method and with
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Table 5. Double-ionization total cross-sections obtained with coupled-channel calculations and with first-order perturbation
approximation.

Proj. Energy ZP/vP Exp. value CC calc. Pert. calc.

MeV/nucl. a.u. (10−16 cm2) (10−16 cm2) (10−16 cm2)

U92+ 1000 0.76 0.15 ± 30% 0.14

U90+ 60 1.92 0.9 –70% +200% 0.81

U90+ 120 1.41 1.8 –50% +100% 0.54

U90+ 420 0.91 0.28 –70% +200% 0.38

Kr36+ 500 0.36 0.016 ± 50% 0.010 0.07

Kr36+ 1000 0.30 0.011 ± 50% 0.012 0.016

C6+ 100 0.1 0.00026 0.00022 0.0003

He2+ 2.31 0.20 0.0022 ± < 10% 0.0026 0.003

Li3+ ” 0.31 0.0085 ± < 10% 0.0059 0.007

B5+ ” 0.51 0.059 ± < 11% 0.032 0.015

C6+ ” 0.62 0.092 ± < 11% 0.15 0.025

Table 6. The ratio R = σ++/σ+ obtained with the cross-sections of Tables 4 and 5.

Proj. Energy γP vP ZP/vP Exp. value CC calc. Pert. calc.

MeV/nucl. a.u. a.u. (×10−3) (×10−3) (×10−3)

U92+ 1000 2.07 120.01 0.76 20.27 ± 30% 29.1

U90+ 60 1.06 46.58 1.92 63 –40% +33% 67

U90+ 120 1.12 63.43 1.41 50 –35% +25% 55

U90+ 420 1.45 98.64 0.91 30 –40% +33% 47

Kr36+ 500 1.53 98.71 0.36 17.2 9.1 10.7

Kr36+ 1000 2.07 120.01 0.30 14.3 13 2.7

C6+ 100 1.1 58.76 0.1 2.6 2.6 2.72

He2+ 2.31 1.002 9.65 0.20 5.0 ± < 9% 6.5 6.5

Li3+ ” ” ” 0.31 8.6 ± < 9% 6.5 6.7

B5+ ” ” ” 0.51 24.3 ± < 9% 15.1 5.2

C6+ ” ” ” 0.62 28.0 ± < 9% 49.1 6.32

the first-order perturbative expression (12). The ratios be-
tween the single- and double-ionization total cross-sections
are listed in Table 6. If the parameter ZP/vP, given in Ta-
bles 4–6, is larger than 0.5, the perturbation calculation
is no more valid.

In the coupled-channel calculations given in Tables 2–6
always 277 channels were used. This number was the max-
imum which we could treat on our work stations. How-
ever, different sets of coupled channels were chosen for
describing the continua, depending on the Lorentz factor
and the charge of the projectile. In the case of fast col-
lisions with the projectiles U92+, U90+, Kr36+ and C6+

(100 MeV/nucleon), channels up to a maximum energy of
28 a.u. were applied. In the other cases with the projec-
tiles He2+, Li3+, B5+, and C6+ (2.31 MeV/nucleon) only
channels up to an energy of 6 a.u. were selected. The spec-
trum of occupation probabilities as a function of energy
shows that mainly the channels with energies up to 5 a.u.
and with angular momentum L = 1 get occupied.

The A2-term in expression (25) scales with γ2
PZ2

P. In
the case of the U92+(1 GeV/nucleon)-projectile, this term
is of the order of the scalar potential term. Therefore, we

included the A2-term for this collision system in our calcu-
lations and obtained the single-ionization cross-section as
7.2 ×10−16 cm2 instead of 4.8 ×10−16 cm2 in Table 4 and
the double-ionization cross-section as 0.16 ×10−16 cm2 in-
stead of 0.14 ×10−16 cm2 in Table 5. The ratio is 0.022
instead of 0.029 in Table 6.

In Figures 2 and 3 we show scaled experimental and
theoretical single- and double-ionization cross-sections, re-
spectively. The comparison of the calculations with ex-
perimental data is difficult to interpret. As indicated in
Tables 4–6 the experimental data have certain error bars
which are quite large for higher incident energies. For ex-
ample, the cross-sections for single- and double-ionization
of He with U90+ projectiles should go steadily down with
increasing incident energy which is not the case in the
given experimental values. On the theoretical side, we can
presently not claim that the used set of basis functions
is already sufficiently complete for the considered cases.
The number of channels increases fast with a finer distri-
bution of the mean energies of the continuum states and
is practically limited by the available computer time.
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as a function of v2

P/ZP presented on
a double-logarithmic scale. The full
squares are the experimental data
(see [6,13,16–19]). The open squares
are the present coupled-channel results.
The full line is a regression line through
our data points according to equa-
tion (27). The open circles are coupled-
channel results of Pfeiffer et al. [8].
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Fig. 3. Scaled double-ionization cross-
section σ++/ZP of Tables 2 and 5
as a function of v2

P/ZP presented on
a double-logarithmic scale. The full
squares are the experimental data
(see [6,13,16–19]). The open squares
are the present coupled-channel results.
The open circles are coupled-channel
results of Pfeiffer et al. [8].

The single-ionization cross-section can be presented by
a scaling law which is the straight line through our calcu-
lated results in the double-logarithmic Figure 2. This line
is given by

σ+

ZP
= 100.60

(
v2
P

ZP

)−0.84

× 10−16 cm2. (27)

Such a scaling law with the use of σ+/ZP versus v2
P/ZP

was first introduced by Olson et al. [20]. The double-
ionization cross-section can not be described by a similar
scaling law.

There was some debate about the importance of static
and dynamic correlations in double ionization of He.

According to the textbook of McGuire [21] one speaks of
static correlations if the emphasis lays on evaluating en-
ergy levels, while dynamic correlations play a role for tran-
sition probabilities and cross-sections. In our calculations
the basis wave functions contain the static correlations due
to the electron-electron interaction. The amplitudes of the
He basis wave functions get mixed by the time-dependent
one-particle potential of the projectile. This description of
the reaction process does not allow to interpret the ion-
ization process in terms of dynamical correlations, i.e.,
whether an ionized electron induces the ionization of the
second electron via the electron-electron repulsion. How-
ever, such processes are hidden in our basis expansion.
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4 Summary and conclusions

We have presented coupled-channel and first order pertur-
bation calculations of cross-sections for single- and double-
ionization of helium in heavy ion collisions. As projectile-
electron interaction we used the unretarded scalar
potential of the projectile. The set of the channels were
helium wave functions built up by Slater functions mainly
for the bound states and Coulomb wave packets for the
continua. A method for discriminating excitation, single
and double ionization of the electrons was developed by
applying a projection with an orthonormalized basis set
of two-electron wave functions.

The convergence properties of the coupled-channel
model were discussed for the proton-helium collision. In
this case the advantage of wave packets in contrast of us-
ing only Slater functions was demonstrated. We investi-
gated collisions of U92+, U90+, Kr36+, He2+, Li3+, B5+

and C6+ projectiles with helium and found a good agree-
ment of single- and double-ionization total cross-sections
with experimental data in general.

Further calculations have to be carried out for cross-
sections differential in the emission angles and energies
of the electrons, where experimental data are available for
comparison with theory. Also the projection formalism for
distinguishing the excitation and ionization needs further
developments.
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